A Derived Equivalence for Blocks with Dihedral Defect Groups
نویسندگان
چکیده
منابع مشابه
Hurwitz Equivalence in Dihedral Groups
In this paper we determine the orbits of the braid group Bn action on Gn when G is a dihedral group and for any T ∈ Gn. We prove that the following invariants serve as necessary and sufficient conditions for Hurwitz equivalence. They are: the product of its entries, the subgroup generated by its entries, and the number of times each conjugacy class (in the subgroup generated by its entries) is ...
متن کاملKülshammer ideals and the scalar problem for blocks with dihedral defect groups
In by now classical work, K. Erdmann classified blocks of finite groups with dihedral defect groups (and more generally algebras of dihedral type) up to Morita equivalence. In the explicit description by quivers and relations of such algebras with two simple modules, several subtle problems about scalars occurring in relations remained unresolved. In particular, for the dihedral case it is a lo...
متن کاملHurwitz Equivalence in Tuples of Dihedral Groups, Dicyclic Groups, and Semidihedral Groups
Let D2N be the dihedral group of order 2N , Dic4M the dicyclic group of order 4M , SD2m the semidihedral group of order 2 m, and M2m the group of order 2 m with presentation M2m = 〈α, β | α 2m−1 = β2 = 1, βαβ−1 = α2 m−2+1〉. We classify the orbits in Dn 2N , Dic n 4M , SD n 2m , and M n 2m under the Hurwitz action.
متن کاملModular Representation Theory of Blocks with Trivial Intersection Defect Groups
We show that Uno’s refinement of the projective conjecture of Dade holds for every block whose defect groups intersect trivially modulo the maximal normal p-subgroup. This corresponds to the block having p-local rank one as defined by Jianbei An and Eaton. An immediate consequence is that Dade’s projective conjecture, Robinson’s conjecture, Alperin’s weight conjecture, the Isaacs– Navarro conje...
متن کاملOn blocks with abelian defect groups of small rank
Let B be a p-block of a finite group with abelian defect group D. Suppose that D has no elementary abelian direct summand of order p. Then we show that B satisfies Brauer’s k(B)-Conjecture (i. e. k(B) ≤ |D|). Together with former results, it follows that Brauer’s k(B)-Conjecture holds for all blocks of defect at most 3. We also obtain some related results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1994
ISSN: 0021-8693
DOI: 10.1006/jabr.1994.1061